Golang 编译器代码浅析
  • 0. Golang 编译器代码浅析
  • 1. golang 编译器 - 前言
    • 1.1 编译器简介
    • 1.2 Golang 编译器
    • 1.3 Go 语言版本
    • 1.4 项目设置
    • 1.5 约定
    • 1.6 写作目的
  • 2. golang 编译器 - 词法分析
    • 2.1 简介
    • 2.2 代码结构
    • 2.3 处理字符
    • 2.4 扫描Token
    • 2.5 总结
  • 3.a 语法分析理论知识
    • 3A.1 语法分析简介
    • 3A.2 文法
    • 3A.3 语法解析
    • 3A.3.1 自顶向下(Top-Down)
    • 3A.3.2 自顶向下 - 递归下降
    • 3A.3.3 自顶向下 - LL(1)文法
    • 3A.3.4 自底向上(Bottom-Up)
    • 3A.3.5 自底向上 - LR(0)项集及SLR预测表
    • 3A.3.6 自底向上 - LR(1)、LALR
    • 3A.4 语法分析工具
    • 3A.5 总结
  • 3B. golang 编译器 - 语法分析
    • 3B.1 简介
    • 3B.2 代码结构
    • 3B.3 数据结构
    • 3B.4 构造语法树
    • 3B.5 Unit Test及AST可视化
  • 4. Golang 编译器 - 类型检查
    • 4.1 简介
    • 4.2 代码结构
    • 4.3 符号解析
    • 4.4.1 数据结构 - 作用域
    • 4.4.2 数据结构 - Package
    • 4.4.3 数据结构 - Object 对象
    • 4.4.4-1 类型数据结构 - 简介
    • 4.4.4-2 类型接口
    • 4.4.4-3 基础类型
    • 4.4.4-4 内置复合类型
    • 4.4.4-5 Struct 类型
    • 4.4.4-6 Interface 类型
    • 4.4.4-7 Named 类型
    • 4.4.4-8 Tuple 类型
    • 4.4.4-9 Sum 类型
    • 4.4.4-10 Function & Method 类型
    • 4.4.4-11 泛型类型
    • 4.4.4-12 类型的等价规则
    • 4.4.4-13 类型的比较规则
    • 4.4.4-14 总结
    • 4.4.5 类型检查器
    • 4.4.6 总结
    • 4.5.1 类型检查逻辑 - 包加载器
    • 4.5.2 类型检查逻辑 - 初始化
    • 4.5.2-1 全局作用域
    • 4.5.2-2 类型检查器
    • 4.5.3 类型检查逻辑 - 流程分析
    • 4.5.3-1.1 总体流程
    • 4.5.3-1.2 类型检查准备工作
    • 4.5.3-1.3 类型检查核心逻辑
    • 4.5.3-1.3a 总体介绍
    • 4.5.3-1.3b 类型表达式的类型检查
    • 4.5.3-1.3c 求值表达式的类型检查
    • 4.5.3-1.3d 类型兼容性检查
    • 4.5.3-1.3e 处理delayed队列
    • 4.5.3-1.4 构建初始化顺序
    • 4.5.3-1.5 总结
    • 4.5.3-2 特定问题分析
    • 4.5.3-2a 对象循环依赖检查
    • 4.5.3-2b 方法与属性查找
    • 4.5.3-2c Underlying Type
    • 4.6 如何测试
    • 4.7 总结
  • 5. Golang 编译器 - IR Tree
    • 5.1 简介
    • 5.2 代码结构
    • 5.3 数据结构
    • 5.4 处理逻辑
    • 5.5 编译日志
    • 5.6 Unit Test
    • 5.7 总结
  • 6. golang 编译器 - 初始化任务
    • 6.1 简介
    • 6.2 代码结构
    • 6.3 总体逻辑
    • 6.4 赋值语句
    • 6.5 编译日志
    • 6.6 Unit Test
    • 6.7 总结
  • 7. golang 编译器 - 清除无效代码
    • 7.1 简介
    • 7.2 处理逻辑
    • 7.3 Unit Test
  • 8. golang 编译器 - Inline
    • 8.1 简介
    • 8.2 Inline的问题
    • 8.3 代码结构
    • 8.4 处理逻辑
    • 8.4.1 遍历调用链
    • 8.4.2 内联判断
    • 8.4.3 内联操作
    • 8.4.4 编译日志
    • 8.4.5 Unit Test
    • 8.4.6 总结
  • 9. golang 编译器 - 逃逸分析
    • 9.1 什么是逃逸分析
    • 9.2 Go 的逃逸分析
    • 9.3 算法思路
    • 9.4 代码结构
    • 9.5 处理逻辑
    • 9.5.1总体逻辑
    • 9.5.2 数据结构
    • 9.5.3 构建数据流有向图
    • 9.5.4 逃逸分析
    • 9.6 编译日志
    • 9.7 Unit Test
    • 9.8 总结
  • 10. golang 编译器 - 函数编译及导出
    • 10.1 简介
    • 10.2 编译函数
    • 10.2.1 SSA
    • 10.2.2 ABI
    • 10.2.3 并发控制
    • 10.3 导出对象文件
    • 10.4 总结
  • 11. Golang 编译器 - 写在最后
由 GitBook 提供支持
在本页

这有帮助吗?

  1. 9. golang 编译器 - 逃逸分析

9.1 什么是逃逸分析

程序运行时将所使用的内存划分成两部分:

  1. 栈(Stack) 函数的局部内存空间,用于保存函数的局部变量,也包括函数调用时的参数、返回值。栈内存与函数的生命周期完全一致,在函数调用时创建、退出时销毁,由程序自动管理,并且栈上数据仅对当前函数可见,因此,只要内存使用的生命周期在函数生命周期之内,都可以分配栈上的空间。

    栈更加高效与安全,但对于使用场景有严格限制。

  2. 堆(Heap) 全局内存空间,由整个程序共享。堆内存的分配与释放需要单独管理,像C语言有专门的分配与释放内存的内置函数,但现在几乎所有的高级编程语言都提供了自动的内存管理策略,Go 语言便是其中之一。由于堆内存的全局可见性,还需要保证并发访问下数据的同步性。

    堆更加灵活,但面临着更复杂的管理问题,为程序带来了额外的开销。

由此可见,对于一个内存区域,它在程序中的可见范围决定了应该使用哪种内存:如果该内存区域的可见范围跨越了多个函数,那么就必须使用堆内存,而如果其可见范围仅仅局限于一个函数之内,则可以优先考虑栈空间。

程序的变量就是对内存区域的抽象,因此,对变量的可见范围(作用域)进行分析,进而判断应该将其分配到栈上还是堆上的过程,叫着逃逸分析。即为了简化内存管理,我们默认所有变量都使用栈空间,但如果一个变量由于被多个函数所引用,必须将其转移到堆上,我们就说该变量“逃逸”到了堆上。

上一页8.4.6 总结下一页9.2 Go 的逃逸分析

最后更新于3年前

这有帮助吗?